Phyllosphere Microbiota Composition and Microbial Community Transplantation on Lettuce Plants Grown Indoors

نویسندگان

  • Thomas R. Williams
  • Maria L. Marco
چکیده

UNLABELLED The aerial surfaces of plants, or phyllosphere, are microbial habitats important to plant and human health. In order to accurately investigate microbial interactions in the phyllosphere under laboratory conditions, the composition of the phyllosphere microbiota should be representative of the diversity of microorganisms residing on plants in nature. We found that Romaine lettuce grown in the laboratory contained 10- to 100-fold lower numbers of bacteria than age-matched, field-grown lettuce. The bacterial diversity on laboratory-grown plants was also significantly lower and contained relatively higher proportions of Betaproteobacteria as opposed to the Gammaproteobacteria-enriched communities on field lettuce. Incubation of field-grown Romaine lettuce plants in environmental growth chambers for 2 weeks resulted in bacterial cell densities and taxa similar to those on plants in the field but with less diverse bacterial populations overall. In comparison, the inoculation of laboratory-grown Romaine lettuce plants with either freshly collected or cryopreserved microorganisms recovered from field lettuce resulted in the development of a field-like microbiota on the lettuce within 2 days of application. The survival of an inoculated strain of Escherichia coli O157:H7 was unchanged by microbial community transfer; however, the inoculation of E. coli O157:H7 onto those plants resulted in significant shifts in the abundance of certain taxa. This finding was strictly dependent on the presence of a field-associated as opposed to a laboratory-associated microbiota on the plants. Phyllosphere microbiota transplantation in the laboratory will be useful for elucidating microbial interactions on plants that are important to agriculture and microbial food safety. IMPORTANCE The phyllosphere is a habitat for a variety of microorganisms, including bacteria with significant relevance to plant and human health. Some indigenous epiphytic bacteria might affect the persistence of human food-borne pathogens in the phyllosphere. However, studies on human pathogens are typically performed on plants grown indoors. This study compares the phyllosphere microbiota on Romaine lettuce plants grown in a Salinas Valley, CA, field to that on lettuce plants grown in environmental chambers. We show that phyllosphere microbiota from laboratory-grown plants is distinct from that colonizing plants grown in the field and that the field microbiota can be successfully transferred to plants grown indoors. The microbiota transplantation method was used to examine alterations to the phyllosphere microbiota after Escherichia coli O157:H7 inoculation on lettuce plants in a controlled environment. Our findings show the importance and validity of phyllosphere microbiota transplantation for future phyllosphere microbiology research.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The impact of the pathogen Rhizoctonia solani and its beneficial counterpart Bacillus amyloliquefaciens on the indigenous lettuce microbiome

Lettuce belongs to the most commonly raw eaten food worldwide and its microbiome plays an important role for both human and plant health. Yet, little is known about the impact of potentially occurring pathogens and beneficial inoculants of the indigenous microorganisms associated with lettuce. To address this question we studied the impact of the phytopathogenic fungus Rhizoctonia solani and th...

متن کامل

Season, Irrigation, Leaf Age, and Escherichia coli Inoculation Influence the Bacterial Diversity in the Lettuce Phyllosphere

The developmental and temporal succession patterns and disturbance responses of phyllosphere bacterial communities are largely unknown. These factors might influence the capacity of human pathogens to persist in association with those communities on agriculturally-relevant plants. In this study, the phyllosphere microbiota was identified for Romaine lettuce plants grown in the Salinas Valley, C...

متن کامل

New insights into the structure and function of phyllosphere microbiota through high-throughput molecular approaches.

The phyllosphere is an ecologically and economically important ecosystem that hosts a large and diverse microbial community. Phyllosphere microbiota play a critical role in protecting plants from diseases as well as promoting their growth by various mechanisms. There are serious gaps in our understanding of how and why microbiota composition varies across spatial and temporal scales, the ecolog...

متن کامل

Pivotal roles of phyllosphere microorganisms at the interface between plant functioning and atmospheric trace gas dynamics

The phyllosphere, which lato sensu consists of the aerial parts of plants, and therefore primarily, of the set of photosynthetic leaves, is one of the most prevalent microbial habitats on earth. Phyllosphere microbiota are related to original and specific processes at the interface between plants, microorganisms and the atmosphere. Recent -omics studies have opened fascinating opportunities for...

متن کامل

Distinct Phyllosphere Bacterial Communities on Arabidopsis Wax Mutant Leaves

The phyllosphere of plants is inhabited by diverse microorganisms, however, the factors shaping their community composition are not fully elucidated. The plant cuticle represents the initial contact surface between microorganisms and the plant. We thus aimed to investigate whether mutations in the cuticular wax biosynthesis would affect the diversity of the phyllosphere microbiota. A set of fou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014